As parents, we are the primary architects of our children’s brains. But babies, as we know, don’t arrive with a set of blueprints to follow. Fortunately for humanity, parents have proven adept at learning on the job.

A rich body of scientific literature demonstrates that the first three years of a child’s life builds the foundation for lifelong learning and achievement — and that a warm, nurturing relationship with caretakers is the most important building block in that
foundation. But little research has been done to quantify parents’ awareness or understanding of that science.

So, my colleagues John List and Julie Pernaudet and I set out to do just that. As detailed in a newly published paper in Nature Communications, we conducted a series of field experiments in which we sought to determine parents’ knowledge and beliefs about foundational brain development, whether those beliefs can be shifted, and if so, to what effect. As detailed in a newly published paper in Nature Communications, we conducted a series of field experiments in which we sought to determine parents’ knowledge and beliefs about foundational brain development, whether those beliefs can be shifted, and if so, to what effect.

First, we found that what parents know and believe about their role in promoting brain development impacts how much they engage in brain-boosting behaviors with their infant. This may sound intuitive, but it’s a critical piece of information. If beliefs didn’t matter, it wouldn’t be worth trying to influence them.

But beliefs matter tremendously, so we developed and studied interventions designed to influence them. A light-touch intervention provided parents with information about brain development during pediatric well-child visits, while a more intensive home-visiting intervention combined education with individual coaching.

Importantly, we found that parental beliefs are malleable, and when shifted, can lead a parent to engage in more facilitative behavior that ultimately leads to improvements in child outcomes, such as vocabulary, math skills and social-emotional skills.

The most obvious conclusion one might draw from this study is that if parents learn more and do more, they can ensure their children have the best possible start in life.
That was certainly the conclusion most people drew after reading my first book, “Thirty Million Words: Building a Child’s Brain,” which summarized and distilled the emerging body of neuroscientific research that reveals how a child’s brain develops.

I was pleased when many parents eagerly and enthusiastically read my book. I was honored to help parents feel more empowered in their parenting and humbled to play a small part in their kids’ learning experiences. But I was disappointed to realize my book was also contributing, in some ways, to parents’ unrelenting sense that they had to do it all, but were never doing enough — or worse, to the idea that some parents were better than others.

Perhaps I shouldn’t have been surprised. So often we view scientific advancements through the American lens of individualism. We ask, first and foremost, how we can put new scientific knowledge into action on the individual level. I understand this instinct, and in fact, celebrate attempts to make scientific findings available to anyone and everyone who might benefit. But we can’t stop there.

In the case of my most recent study, doing so would mean placing more responsibility and more stress on parents who are already overburdened, underresourced, and all too often, facing constraints that frankly make it impossible for them to act on this science. It would mean failing to examine how these important research findings can be applied to enhance systems instead of individuals.

Instead, I hope others recognize what I consider this study’s most important revelation: Our society has failed to provide the support parents and families need during children’s incredibly formative early years.

We have overwhelming evidence that education doesn’t begin on the first day of school, but on the first day of life. Yet we still lack a systematic, universal way of educating and supporting the parents who are, in reality, our society’s first and most important teachers.
Most parents are hardwired with an impulse to love, nurture and protect their children. But this does not mean that they inherently possess an understanding of burgeoning neuroscience! Our study revealed huge variation in what parents do know. Personally, I had almost no understanding of my role in building my children’s brains when my oldest was born 22 years ago.

It is long past time to adopt — and fund — policies that educate parents about early brain development. This will require reforming and expanding our narrow and fragmented public early childhood system and leveraging other opportunities to reach parents on a large scale.

It does little good for a parent to know and believe that she has the ability to shape her child’s foundation for learning through strong attachment and nurturing interaction if she has to return to work days after giving birth, if she has to work around the clock just to keep a roof over their heads, if she has to leave her child in an undesirable care environment.

The irony is that as our understanding of children’s developmental needs has exploded, the structures and supports that would help parents meet those needs have dwindled.

Just as we strive to bring neuroscientific knowledge to parents, to shift their beliefs and impact their behavior, so too should we endeavor to bring that knowledge to the business leaders, community leaders and elected officials whose policies affect parents; to shift the beliefs and the actions of society at large. So that finally, parents are recognized as the architects of their children’s brains and society’s future, and are supported by programs, policies and norms that allow them to succeed in that role.

*Dana Suskind, MD, is founder and co-director of the TMW Center for Early Learning + Public Health, director of the Pediatric Cochlear Implant Program, and professor of Surgery and Pediatrics at the University of Chicago.*